Bismuth-doped Silica Fiber Amplifier
نویسندگان
چکیده
To accommodate rapidly increasing quantities of information and communication, optical fiber transmission technology with high-speed high-capacity is demanded. The development of an optical gain medium and fiber amplifiers to cover the 1250~1650 nm region, which is the entire optical telecommunication windows of silica fiber, becomes an important issue for ultra-wide broadband optical communication. Bismuth-doped glasses exhibit a broadband luminescence in the near infrared region. Thus, they are potential gain media for extending the spectral bandwidth of the current erbium-doped silica fiber amplifiers. There are several reports on an infrared luminescence from bismuth-doped glasses such as germanate, phosphate, borate et al. (Meng et al., 2005ab; Peng et al., 2005abc; Suzuki & Ohishi, 2006). According to their research, bismuth-doped glasses are therefore very promising for creating broadband amplifiers for fiber telecommunication lines and tunable or femto-second lasers. There are two useful wavelengths for optical communication. One is the 1550 nm, erbiumdoped fiber amplifiers (EDFAs) working wavelength, which has minimum losses. EDFA developments within the third telecommunication window have contributed to the rapid growth of wavelength division multiplexing (WDM) transmission systems. The L-band (1570~1605 nm) of EDFA can be used in WDM systems in conjunction with C-band (1530~1560 nm). However, efforts to use WDM techniques to exploit this capability have been hampered by nonlinear fiber effects such as four-wave mixing. In addition, the amplification bandwidth of silica-based EDFA is as small as ~70 nm (Yamada et al., 1998). A broadband amplifier with a gain bandwidth of more than 70 nm was reported by the integration of EDFA with thulium-doped fiber amplifiers or fiber Raman amplifiers (FRAs) (Yamada et al., 1998). The other useful wavelength (1300 nm) for optical communication is O-band, between 1260 and 1360 nm, which is the natural zero-dispersion region of silica glass fiber where the temporal distortion of transferred optical pulses can be minimized. For example, praseodymium-doped fluoride fiber amplifiers (PDFFAs) and FRAs have been successfully used for 1300 nm amplification, but it also suffer from narrow bandwidth (~25 nm) in operating wavelength and low efficiency (Miyajima et al., 1991; Whitley, 1995). In addition, a PDFFA normally made from fluoride glass, which is very brittle and cannot be fusion spliced to the silica glass fiber. An alternative core fiber material and fiber amplifier for 1300 nm amplification is expected. Source: Frontiers in Guided Wave Optics and Optoelectronics, Book edited by: Bishnu Pal, ISBN 978-953-7619-82-4, pp. 674, February 2010, INTECH, Croatia, downloaded from SCIYO.COM
منابع مشابه
Observation of Raman Gain in Reduced Length of Bismuth Erbium Doped Fiber
Raman amplification of a 49 cm Bismuth oxide (Bi2O3) as a nonlinear gainmedium based erbium doped fiber amplifier (EDFA) is reported in new and compactdesign in near infrared spectral regions. The bismuth glass host provides theopportunity to be doped heavily with erbium ions to allow a compact optical gain fiberamplifier design by using reduced fiber length and the 1480...
متن کاملBismuth-doped Fibres for Near-infrared Light Sources: Progress and Prospects
Jayanta Kumar Sahu, Mridu P. Kalita and Seongwoo Yoo Optoelectronics Research Centre, University of Southampton, U.K. [email protected] Abstract: The luminescence properties of Bi-doped silica fibres in the near-infrared region are discussed. Bi-doped fibre lasers and amplifiers and their dependence on the unsaturable loss and excited state absorption are also discussed.
متن کاملOptical spectroscopy of bismuth-doped pure silica fiber preform.
We report on the optical spectroscopy of monolithic fiber preform prepared from nanoporous bismuth-doped silica glass. The experiments reveal the existence of at least two different types of active centers and clearly demonstrate that the presence in the glass matrix of other dopant is not necessary to obtain the near-IR photoluminescence connected to Bismuth.
متن کاملHigh quantum efficiency of near-infrared emission in bismuth doped AlGeP-silica fiber.
A self-calibrating method is described for measuring the radiative quantum efficiency (QE) in doped optical fibers. The method uses an integrating sphere to collect the fluorescence from the fiber, with pump light transmitted through the fiber end serving as a reference. QE measurements for a 780 or 808 nm pump were made on bismuth-doped AlGeP-silica fibers prepared by aerosol deposition. For b...
متن کاملEffect of absorption recovery in bismuth-doped silica glass at 1450 nm on soliton grouping in fiber laser
Saturable absorption in bismuth-doped glasses was found to have a noticeable influence on soliton interaction and group formation. This phenomenon, observed in 1450 nm mode-locked bismuth-doped fiber laser, shows the distinct feature of the multiple pulse regime, which appears as a stationary pulse group whose length can be spread over the whole cavity length by variation of the pump power and ...
متن کامل